Fixed Point Theorems in Uniform Space and Its Applications
DOI:
https://doi.org/10.32628/IJSRST25125102Keywords:
Common fixed point, Hausdorff Uniform spaces, E & A-Distance, weakly compatible maps, admissible mappings, simulation functionsAbstract
In this study, we use the notation of E-distance in uniform space to prove certain popular fixed-point theorems for pairs of weakly and semi-compatible mappings. For a pair of self-mappings in Hausdorff uniform spaces, we prove various stability results for a few common fixed points. Our findings enhance and generalize some of the established stability findings in the literature. Classification of Mathematics Subjects: 47H10, 49H10, 54H25.
Downloads
References
B.K. Sharma, D.R. Sahu and, Y. J. Cho, Semi compatibility and fixed points, Math. Japon, 42(1995), no.1, 91-98.
B.K. Rhoades and G. Jujck, Fixed points for set valued functions without continuity, Indian J. Pure Appl. Math. 29(1998), no. 3, 227-238.
D. Moutawakil and M. Aamri, Weak compatibility and common fixed-point theorems for A-contractive and E- Expansive maps in uniform spaces, Serdica Math. J. 31(2005), 75-86.
Khojasteh, F., Shukla, S. & Radenovic, S. A new approach to the study of fixed-point theory for simulation functions. Filomat. 29(6), 1189–1194 (2015). DOI: https://doi.org/10.2298/FIL1506189K
Aydi, H. & Felhi, A. Fixed points in modular spaces via α-admissible mappings and simulation functions. Journal of Nonlinear Science and Applications 9, 3686–3701 (2016). DOI: https://doi.org/10.22436/jnsa.009.06.20
Karapinar, E. Fixed points result via simulation functions. Filomat. 30(8), 2343–2350 (2016). DOI: https://doi.org/10.2298/FIL1608343K
Rodrigues-Montes, J. & Charris, J. A. Fixed points for W-contractive or W-expansive maps in uniform spaces: toward a unified approach. Southwest journal of Pure and Applied Mathematics 1, 93– 101 (2001).
Umudu, J. C., Olaleru, J. O. & Mogbademu, A. A. Best proximity points result for Geraghty p- proximal cyclic quasi-contraction in uniform spaces. Divulgaciones Matematicas 21(1-2), 21– 31 (2020). DOI: https://doi.org/10.1186/s13663-020-00683-z
Samet, B., Vetro, C. & Vetro, P. Fixed point theorems for α-ψ-contractive mappings. Nonlinear Analysis 75, 2154–2165 (2012). DOI: https://doi.org/10.1016/j.na.2011.10.014
Bourbaki, N. Topologie Generale, Chapitre 1: Structures Topologies, Chapitre 2: Structures Uniformes. Quatrieme Edition. Actualites Scientifique set Industrielles, Hermann, Paris, France.1142, (1965)
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0