Hydrogen Bonding and Relaxation Phenomena in Aqueous Adenine: Ultrasonic and Acoustic Investigations

Authors

  • P. D. Bageshwar Department of Physics, Mungsaji Maharaj Mahavidyalaya, Darwha – 445 304, Maharashtra, India Author

DOI:

https://doi.org/10.32628/IJSRST25125106

Abstract

The molecular interactions of adenine in aqueous solutions were investigated through ultrasonic velocity, density and viscosity measurements at varying molar concentrations and temperatures. From these fundamental properties, a range of thermo-acoustical parameters such as adiabatic compressibility, acoustic impedance, relaxation time, free length, internal pressure and free volume were evaluated. The results reveal strong molecular associations between adenine and water, primarily governed by hydrogen bonding and dipole-induced dipole interactions. Non-linear variations in ultrasonic absorption and compressibility at specific concentrations indicate structural relaxation and molecular aggregation phenomena. This study highlights the utility of ultrasonic and acoustic measurements in elucidating solute-solvent interactions and the structural stability of nucleobase systems.

Downloads

Download data is not yet available.

References

Jacobson, B. "Intermolecular free lengths in liquid mixtures." Acta Chemica Scandinavica, 6, 1485 (1952). DOI: https://doi.org/10.3891/acta.chem.scand.06-1485

Kannappan, A. N., Palaniappan, L. "Ultrasonic studies of molecular interactions in binary liquid mixtures." Indian Journal of Pure and Applied Physics, 32, 837–840 (1994).

Ali, A., Nain, A. K., Chand, D. "Ultrasonic and viscometric studies of molecular interactions in solutions." Journal of Solution Chemistry, 28, 1121–1135 (1999).

Eyring, H., Ree, T. "Significant liquid structures." Proceedings of the National Academy of Sciences, 47, 526–537 (1961). DOI: https://doi.org/10.1073/pnas.47.4.526

Bogumil B. J., Linde, Lezhnev N. B., J. Mol. Struct., 754 (2005) 111. DOI: https://doi.org/10.1016/j.molstruc.2005.06.037

Dhana Lakshmi, Sekhar S., Ind. J. Pure Appl. Ultrason., 21(3), (1999) 97.

Chimankar O. P., Jajodia S., Shriwas R., Tabhane V. A., Arch. Appl. Sci. Res., 3(3), (2011) 252.

Tabhane V. A., Patki B. A., Acustica, 52 (1982).

Madhumitha J., Santhi N., Alamelumangai G., Emayavaramban M., Int. Lett. Chem. Phys. Astron., 4 (2012) 82-95. DOI: https://doi.org/10.56431/p-8t4037

Ubagaramary D., Neeraja P., IRJES, 1(4), (2012) 54-77.

Riyazuddeen, Afrin S., J. Chem. Eng., 55 (2010) 2643.

Pawar N. R., Chimankar O. P., J. Pure Appl. Ultrason., 37 (2015) 1-4.

Bageshwar P. D., Chimankar O. P., Pawar N. R., J. Pure Appl. Ultrason., 38 (2016) 40-42.

Downloads

Published

20-12-2024

Issue

Section

Research Articles

How to Cite

Hydrogen Bonding and Relaxation Phenomena in Aqueous Adenine: Ultrasonic and Acoustic Investigations. (2024). International Journal of Scientific Research in Science and Technology, 11(6), 1110-1113. https://doi.org/10.32628/IJSRST25125106