Evaluating the Capacity of Machine Learning Models to Quell Cybersecurity Threats

Authors

  • Abiodun Kazeem Oniyide 3332, North Chatham Road, Ellicott City MD21042 Author
  • Kenneth O. Ogirri American Electrical Power– POS, 212, E 6th St Tulsa, OK 74102, Oklahoma, USA Author
  • Chinonso Francis Nkeoma Ubbaonu Department of Industrial Systems Engineering, Morgan State University, Baltimore, USA Author

DOI:

https://doi.org/10.32628/IJSRST25126284

Keywords:

Machine learning models, Cybersecurity threats, Quelling, Capacity, AI

Abstract

There are increasing threats to individuals, digital resources, critical infrastructure and phenomena on the cyberspace. The threats raise national and global concerns. This study explores the capacity of machine learning (ML) models to effectively quell the rising cybersecurity threats in contemporary times. It relied on secondary data and employed qualitative method. The data, drawn from several major repositories, were analyzed qualitatively. Applying exclusion and inclusion criteria, some of the gathered data were exclude, while others were include in the study. The analysis demonstrates that ML models are capable of quelling cybersecurity threats by detecting, predicting, resisting, preventing, automating, and optimizing cybersecurity processes and operations, thereby safeguarding the cyberspace at an appreciable extent. By undertaking these advanced tasks that are beyond human capacity, ML models are highly advantageous amidst the identified ethical concerns associated with them. The study argues that although machine learning models have their lapses, they are more capable of quelling cybersecurity threats than human beings could do. Therefore, it calls on stakeholders to significantly leverage ML models in combination with other technology-driven and conventional measures for combating cybersecurity threats in various settings.

Downloads

Download data is not yet available.

References

Adewole, K. (2011). An inquiry into the awareness level of cyber security policy and measures in Nigeria. International Journal of Science and Advanced Technology, 1(7), 91–96.

Akinola, A. P. (2024). Leveraging cost-effective AI and smart technologies for rapid infrastructural development in USA. African Journal of Advances in Science and Technology Research, 15(1), 59-71. https://doi.org/10.62154/rktd4f30

Akintoye, R. et al. (2022). Cyber security and financial innovation of selected deposit banks in Nigeria. Universal Journal of Accounting and Finance, 10(3), 643-652.

Akter, M. S. (2024). AI for sustainability: Leveraging technology to address global environmental. Journal of Artificial Intelligence General Science (JAIGS), 2(1), 41-48.

Alamleh, A., Almatarneh, S., Samara, G., & Rasmi, M.(2023). Machine learning-based detection of smartphone malware: Challenges and solutions. Mesopotamian Journal of Cybersecurity, 2023, 134–157. DOI: https://doi.org/10.58496/MJCS/2023/017

AL-Hawamleh, A. M. (2023). Predictions of cyber security experts on future cyber-attacks and related cyber security measures. International Journal of Advanced Computer Science and Applications, vol.14, no.2

Almomoni, A. A., & Maglara, L. (2021). Cyber security martunity assesment framework for higher education institution in Saudi Arabia. Peer Computer Science, 7, 703 https://doi:org/10.7717peerd-cs703.

Anderson, B. (2020, December). 3 dangerous cross-site scripting attacks of the last decade. ReadWrite, 1. Available from: https://readwrite.com/3-dangerous-cross-site-scripting- attacks-of-the-last-decade.

Araya, S., Elghazouli, A. & Ahmed, Z. (2021). Design for manufacture and assembly of modular buildings using generative design and optimization algorithms. Journal of Computing in Civil Engineering, 35(2), 04021006.

Awhefeada, U. V., & Ohwomeregwa, O. B. (2020). Appraising the law governing the control of cyber crime in Nigeria. Journal of Law and Criminal Justice, 8(1), 30-49. DOI: 10.15640/jlcj.v8n1a3

Babatunde, L. A., Etim, E. D., Essien, I. A., Cadet, E., Ajayi, J. O., Erigha, E. D., & Obuse, E. (2020). Adversarial machine learning in cybersecurity: Vulnerabilities and defense strategies. Journal of Frontiers in Multidisciplinary Research, 1(2), 31-45. DOI: https://doi.org/10.54660/.JFMR.2020.1.2.31-45

Barrett, M. P. (2018). Framework for improving critical infrastructure cybersecurity version 1.1. NIST Cybersecurity Framework. http://dx.doi.org/10.1002/https://dx.doi.org/10.6028/NIST.CSWP.04162018

Bataglin, F. S., Almeida, J. R., & Isatto, E. L. (2021). Robotic assembly in modular construction: a case study. Automation in Construction, 122, 103485. https://doi.org/10.1016/j.autcon.2020.103485

Bulama, L. & Shrivastava, M. (2023). Framework & techniques to improve cyber security in Nigeria. Journal of Data Acquisition and Processing, vol.38, no.2.

Bulama, L., & Shirivastata, M. (2022). The role of information & communication technology towards protection of lives and property in Northern Nigeria: A focus on Maiduguri Borno state. International Interdisciplinary Research Journal, vol.14, no.1, 1–9.

Chaudhary, P., Gupta, B. B., & Gupta, S. (2016). Cross-site scripting (XSS) worms in online social network (OSN): Taxonomy and defensive mechanisms. 3rd International Conference on Computing for Sustainable Global Development (INDIACom), 2131– 2136.

Chen, X., Li, M., Jiang, Y. U., & Sun, Y. (2019). A comparison of machine learning algorithms for detecting XSS attacks. Artificial Intelligence and Security, 11635, 214- 224.

Chitimira, H., & Ncube, P. (2021). The regulation and use of artificial intelligence and 5G technology to combat cybercrime and financialcrime in South African Banks. PER/ PELJ(24). DOI: http://dx.doi.org/10.17159/1727-3781/2021/v24i0a10742

Dauda, A., Adekunle A. U., Ekuewa, J. B., & Ayediran, O. R (2020). Challenges and way out of cyber security issues in Nigeria. Villanova Journal of Science, Technology and Management, 2(1), 34-48.

Dixit, P. & Silakari, S. (2021). Deep learning algorithms for cyber security applications: A technological and status review. Computer Sci. Rev., 39, 100317. https://doi.org/10.1016/J. COSREV.2020.100317

Erdem, E. S. (2014). Ses sinyallerinde duygu tanima ve geri erişim. Yüksek Lisans Tezi, Başkent Üniversitesi, Ankara.

Essien, I. O., Etim, E. D., Obuse, E., Cadet, E., Ajayi, J. O., Erigha, E. D., & Babatunde, L. A. (2021a). Neural network-based phishing attack detection and prevention systems. Journal of Frontiers in Multidisciplinary Research, 2(2), 222-238. DOI: https://doi.org/10.54660/.JFMR.2021.2.2.222-238

Gibson, D., Kovanovic, V., Ifenthaler, D., Dexter, S., & Feng, S. (2023). Learning theories for artificial intelligence promoting learning processes. British Journal of Educational Technology, 54, 1125–1146. https://doi.org/10.1111/bjet.13341

Gkioulos, V., & Chowdhury, N. (2021). Cyber security training for critical infrastructure protection: A literature review. Computer Sci Rev, 40(100361). https://doi.org/10.1016/J. COSREV.2021.100361

Jhaveri, R. H., Revathi, A., Ramana, K., Raut, R., & Dhanaraj, R. K. (2022). A review on machine learning strategies for real-world engineering applications. Hindawi Mobile Information Systems, 2022(26). https://doi.org/10.1155/2022/1833507

Jian-Hua, L. (2021). Cyber security meets machine learning. In cyber security meets machine learning. Springer Singapore. https://doi.org/10.1007/978-981-33-6726-5

Kaur, J., Garg, U., & Bathla, G. (2023). Detection of cross site scripting (XSS) attacks using machine learning techniques: A review. Artificial Intelligence Review, https://doi.org/10.1007/s10462-023-10433-3

Kaur, S., & Singh, M. (2019). Hybrid intrusion detection and signature generation using deep recurrent neural networks. Neural Computer App., 32(12), 7859–7877. https://doi.org/ 10.1007/S00521-019-04187-9

Kızılkaya, Y. M., & ve Oğuzlar, A. (2018). Denetimli öğrenme algoritmalarinin r programlama dili ile kiyaslanmasi. Karadeniz, 37(37), 90-98.

Kocadayı, Y., Erkaymaz, O., & ve Uzun, R. (2017). Yapay Sinir Ağları ile Tr81 Bölgesi Yıllık Elektrik Enerjisi Tüketiminin Tahmini. Bilge International Journal of Science and Technology Research, 1(1), 59-64.

Kocaturk, T., Toma, C., Aduriz, A., & Harding, J. (2023). Integration of AI-driven generative design system in a modular design process for the AW Classroom project. Automation in Construction, 135, 104198. https://doi.org/10.1016/j.autcon.2022.104198

Kodete, C. S., Thuraka, B., Pasupuleti, V., & Malisetty, S. (2024). Determining the efficacy of machine learning strategies in quelling cyber security threats: Evidence from selected literatures. Asian Journal of Research in Computer Science, 17(8), 24-33. DOI: 10.9734/ajrcos/2024/v17i7487

Kshetri, N. (2017). cyber crime and cyber security in Africa. Journal of Global Information Technology Management, 22(2), 77 81.

Luo, C., Tan, Z., Min, G., Gan, J., Shi, W. & Tian, Z. (2021). A novel web attack detection system for internet of things via ensemble classification. IEEE Trans. Industry Inf., 17(8), 5810–5818. https://doi.org/10.1109/ TII.2020.3038761

Marashdih, A. W., Zaaba, Z. F., Suwais, K., & Mohd, N. A. (2019). Web application security: An investigation on static analysis with other algorithms to detect cross site scripting. Procedia computer science, 161, 1173–1181.

Mohammad, S. M. (2020). Artificial intelligence in information technology. International Journal of Innovations in Engineering Reearch and Technology [Ijiert], vol.7, iss.6.

Mohammad. G., & Reza, S. (2017). Software vulnerability analysis and discovery using machine-learning and data-mining techniques. ACM Computer Survey (CSUR), 50(4). https://doi. org/10.1145/3092566

Motiwala, A. (2017). Cyber security in Ghana: Evaluating readiness for the future. Annaar International Peacekeeping Training Centre Brief, (1), 1-4.

Nithya, B., & Ilango, V. (2017). Predictive analytics in health care using machine learning tools and techniques. In 2017 International Conference on Intelligent Computing and Control Systems, ICICCS 2017. Institute of Electrical and Electronics Engineers Inc.

Njoku, D. O., Iwuchukwu, V. C., Jibiri, J. E. Ikwuazom, C. T., Ofoegbu, C. I., & Nwokoma, F. O. (2024). Machine learning approach for fraud detection system in financial institution: a web base application. International Journal of Engineering Research and Development, 20 (4). 01-121.

Obiuto, N. C., Adebayo, R. A., Olajiga, O. K. & Festus-Ikhuoria, I. C. (2024). Integrating artificial intelligence in construction management: Improving project efficiency and cost-effectiveness. Int. J. Adv. Multidisc. Res. Stud., 4(2), 639-647.

Obuse, E., Etim, E. D., Essien, I. A., Cadet, E., Ajayi, J. O., Erigha, E. D., & Babatunde, L. A. (2020). Explainable AI for cyber threat intelligence and risk assessment. Journal of Frontiers in Multidisciplinary Research, 1(2), 15-30. https://doi.org/10.54660/.JFMR.2020.1.2.15-30

Obuse, E., Etim, E. D., Essien, I. A., Cadet, E., Ajayi, J. O., Erigha, E. D., & Babatunde, L. A. (2023). AI-powered incident response automation in critical infrastructure protection. Int. J. Adv. Multidisc. Res. Stud., 3(1), 1156-1171. DOI: https://doi.org/10.62225/2583049X.2023.3.1.4899

Ogirri, K. O., & Ogedengbe, O. G. (2024). Can artificial intelligence forge the future of business management, e-commerce, and finance? a comprehensive exploration of transformative trends after COVID-19. Asian Journal of Education and Social Studies, 50(8), 367-78. https://doi.org/10.9734/ajess/2024/v50i81536

Ogirri, K. O., Akinloye, A., & Oguntona, T. I. (2024, Aug.). Machine learning techniques, gas emission mitigation, and environmental safety. Journal of Science Innovation & Technology Research (JSITR), 5(9), 255-267.

Ogunsakin, O. L. (2023, Dec.). Assessing the extent to which AI is revolutionizing UK and USA healthcare sector. Journal of Clinical and Metabolism Studies (JCMS), 2(2), 41-53.

Ogunsakin, O. L. (2024). Artificial Intelligence in healthcare, revamping the artificial intelligence in medical sector. Iconic Research and Engineering Journals, 7(10), 245- 258.

Ogunsakin, O. L., & Anwansedo, S. (2024). Leveraging AI for healthcare administration: Streamlining operations and reducing costs. Iconic Research and Engineering Journals, 7(10), 235-244.

Oguntona, T. I. (2023, March). Mitigating the impact of high energy prices on UK households using machine learning techniques. International Journal of Modelling & Applied Science Research, 27(9), 215-230.

Okusi, O. (2024). Cyber security techniques for detecting and preventing cross-site scripting attacks. World Journal of Innovation and Modern Technology, vol.8, no.2, 71-89. DOI: 10.56201/wjimt.v8.no2.2024.pg71.89

Okusi, O. A. (2023). An analysis of cross-site scripting and its preventive techniques. M.Sc. Cyber Security: CSCT Masters Project. Department of Computer Science and Creative Technologies, University of West England (UWE), Bristol.

Onan, A., & Tocoglu, M. A. (2021). A term weighted neural language model and stacked bidirectional LSTMbased framework for sarcasm identification. IEEE Access, 9, 7701- 7722. https://doi.org/10.1109/ACCESS.2021.3049734

Onan, A. (2019). Consensus clustering-based undersampling approach to imbalanced learning. Sci Program. https://doi.org/10.1155/2019/59010 87

Onifade, S. T., & Alola, A. (2022). Energy transition and environmental quality prospects in leading emerging economies: The role of environmental-related technological innovation. Sustain. Dev. 30(2), 1-13. https://doi.org/10.1002/sd.2346.

Pavan, K. P., Jaya, T., & Rajendran, V. (2021). SI-BBA: A novel phishing website detection based on swarm intelligence with deep learning. Mater Today. https://doi.org/10.1016/J. MATPR.2021.07.178

Raghavan, A. R., & Parthiban, L. (2014). The effect of cybercrime on a bank’s finances. International Journal of Current Research & Academic Review, 2(2), 173-178.

Regona, M., Yigitcanlar, T., Xia, B., & Li, R. Y. M. (2022). Opportunities and adoption challenges of AI in the construction industry: a PRISMA review. Journal of Open Innovation: Technology, Market, and Complexity, 8(1), article number 45.

Rodríguez, G. E., Torres, J. G., Flores, P. & Benavides, D. E. (2020). Cross-site scripting (XSS) attacks and mitigation: A survey. Computer Networks, 166(106960). https://doi.org/10.1016/J.COMNET.2019.106960

Sarker, S., Paul, M. K., Thasin, S. T. H., Al Mehedi, H. (2024). Analyzing students’ academic performance using educational data mining. Computers and Education: Artificial Intelligence, 7 100263

Shawana, T. A. (2022). Carbon emissions as threats to environmental sustainability: Exploring conventional and technology-based remedies. African Journal of Environmental Sciences and Renewable Energy, 8 (1), 143-157. https://publications.afropolitanjournals.com/index.php/ajesre/article/view/736

Sırmaçek, B. (2007). Fpga ile mobil robot için öğrenme algoritmasi modellenmesi. Yüksek lisans tezi, Yıldız Teknik Üniversitesi, İstanbul.

Snehi, M., & Bhandari, A. (2021). Vulnerability retrospection of security solutions for software- defined cyber-physical system against DDoS and IoT-DDoS attacks. Computer Sci Rev. https://doi.org/10.1016/j.cosrev.2021.100371

Tariq, I., Sindhu, M. A., Abbasi, R. A., Khattak, A. S., Maqbool, O., & Siddiqui, G. F. (2021). Resolving cross-site scripting attacks through genetic algorithm and reinforcement learning. ExpSyst App., 168(114386). https://doi.org/10.1016/J.ESWA.2020.114386

Thakkar, A., & Lohiya, R. (2021). A survey on intrusion detection system: feature selection, model, performance measures, application perspective, challenges, and future research directions. Artificial Intell Rev. 55(1), 453–563. https://doi.org/10.1007/S10462-021- 10037-9

Thompson, N. C., Greenewald, K., Lee, K., & Manso, G. F. (2020). The computational limits of deep learning. arXiv preprint arXiv, 2007.05558.

Vidya, P. M. (2014). Cyber security – trends and challenges. International Journal of Computer Science and Mobile computing, 3(2), 586-590.

Volk, M. (2024). A safer future: Leveraging the AI power to improve the cybersecurityin criticalinfrastructures. ELEKTROTEHNIŠKI VESTNIK, 91(3), 73-94.

Wang, P. (2019). On defining artificial intelligence. Journal of Artificial General Intelligence, 10(2), 1-37.

Wusu, G. E., Alaka, H., Yusuf, W., Mporas, I., Toriola-Coker, L., & Oseghale, R. (2022). A machine learning approach for predicting critical factors determining adoption of offsite construction in Nigeria. Smart and Sustainable Built Environment (ahead-of-print).

Zhang, G., Liu, B., Zhum, T., Zhou, A., & Zhou, W. (2022). Visual privacy attacks and defenses in deep learning: A survey. Artif Intell Rev, 1-55. https://doi.org/10.1007/ S10462-021- 10123-Y

Zhang, Q., et al. (2019). Deep learning for predictive maintenance of industrial equipment: a review. IEEE Access, 7, 62624-62634.

Zhang, Z., Ning, H., Shi, F., Farha, F., Xu, Y., Xu, J., Zhang, F. & Choo, K. K. R. (2021). Artificial intelligence in cyber security: Research advances, challenges, and opportunities. Artif Intell Rev., 55(2), 1029–1053. https://doi.org/10.1007/S10462-021- 09976-0

Zhou, Y. & Wang, P. (2019). An ensemble learning approach for XSS attack detection with domain knowledge and threat intelligence. Computer Security, 82, 261–269. https://doi.org/10. 1016/J.COSE.2018.12.016

Zwilling, M., Romano, A., Hoffman, H., Lotan, M., & Tesler, R. (2022). Development and validation of a system for the prediction of challenging behaviors of people with autism spectrum disorder based on a smart wearable shirt: A mixed-methods design. Front. Behav. Neurosci., 16, 948184. doi: 10.3389/fnbeh.2022.948184

Downloads

Published

26-03-2024

Issue

Section

Research Articles

How to Cite

[1]
Abiodun Kazeem Oniyide, Kenneth O. Ogirri, and Chinonso Francis Nkeoma Ubbaonu, Trans., “Evaluating the Capacity of Machine Learning Models to Quell Cybersecurity Threats”, Int J Sci Res Sci & Technol, vol. 11, no. 2, pp. 1109–1120, Mar. 2024, doi: 10.32628/IJSRST25126284.