A Panoramic View on Neurodegeneration, Its Connection with Microbiota and Its Therapeutics

Authors

  • Tejas Ganatra PhD-Research Scholar, Associate Professor, School of Pharmacy, RK University – 360020, Gujarat, India Author
  • Pravin Tirgar Director & Professor, School of Pharmacy, RK University – 360020, Gujarat, India Author

DOI:

https://doi.org/10.32628/IJSRST25126403

Keywords:

Neurodegeneration, Parkinsonism, Alzheimer's disease, Gut brain axis, antioxidants

Abstract

Neurodegenerative diseases are becoming one of the leading causes of death globally and silently affecting the society. The major cause of neurodegeneration is accumulation of free radicals and reactive oxygen species that can induces cellular events of mitochondrial damage, activation of other necrotic cascades that results into neuronal death. One of the underlying causes of this accumulation is aging and reduced antioxidants in the body as well as the novel finding suggests that imbalance in Gut Brain Axis (GBA) is the major cause. Microbial gut flora plays an important role in balancing these free radicals as well as neural homeostasis. Due to aging and other causes this axis is damaged resulting into failure in repair mechanism against the neuronal death. Current therapy for neurodegeneration fails to treat the condition and only managing the symptoms because the therapy is intended for symptomatic cure only. Recent advances in therapy of neurodegeneration involves the repairing of system from root cause, by the means of gene therapy, immunomodulation, anti-oxidants therapy, balancing gut microbiota which can balance the Gut Brain Axis and thus can helpful to control several conditions, use of novel drug delivery system to improve the effectiveness of available treatments like nano-gel, nano-suspension, hydrogels, etc.

Downloads

Download data is not yet available.

References

Parkinson’s Disease in 204 Countries/Territories From 1990 to 2019. Front. Public Heal. (2021) 9, 776847. https://doi.org/10.3389/FPUBH.2021.776847/FULL.

Gadhave, D., Gupta, A., Khot, S., Tagalpallewar, A., Kokare, C., Nose-to-brain delivery of paliperidone palmitate poloxamer-guar gum nanogel: Formulation, optimization and pharmacological studies in rats. Ann. Pharm. Françaises (2023) 81, 315–333. https://doi.org/10.1016/J.PHARMA.2022.08.010. DOI: https://doi.org/10.1016/j.pharma.2022.08.010

Niazi, S.K., Non-Invasive Drug Delivery across the Blood–Brain Barrier: A Prospective Analysis. Pharmaceutics 15. https://doi.org/10.3390/PHARMACEUTICS15112599. DOI: https://doi.org/10.3390/pharmaceutics15112599

Olufunmilayo, E.O., Gerke-Duncan, M.B., Holsinger, R.M.D., Oxidative Stress and Antioxidants in Neurodegenerative Disorders, 2023, Vol. 12, 517 12 Antioxidants 517. https://doi.org/10.3390/ANTIOX12020517 DOI: https://doi.org/10.3390/antiox12020517

Sayre, L.M., Perry, G., Smith, M.A.,. Oxidative stress and neurotoxicity. Chem. Res. Toxicol. 21, 172–188. 2008 https://doi.org/10.1021/TX700210J/ASSET/IMAGES/LARGE/TX-2007-00210J_0001.JPEG DOI: https://doi.org/10.1021/tx700210j

Singh, A., Kukreti, R., Saso, L., Kukreti, S., Oxidative Stress: A Key Modulator in Neurodegenerative Diseases. Molecules 24. 2019 https://doi.org/10.3390/MOLECULES24081583. DOI: https://doi.org/10.3390/molecules24081583

Ashraf, GM et al., Protein misfolding and aggregation in Alzheimer’s disease and type 2 diabetes mellitus. CNS Neurol. Disord. Drug Targets 13, 1280. https://doi.org/10.2174/1871527313666140917095514. DOI: https://doi.org/10.2174/1871527313666140917095514

Khanam, H., Ali, A., Asif, M., Shamsuzzaman, Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur. J. Med. Chem. (2016) 124, 1121–1141. https://doi.org/10.1016/J.EJMECH.2016.08.006. DOI: https://doi.org/10.1016/j.ejmech.2016.08.006

T¨onnies, E., Trushina, E., Oxidative Stress, Synaptic Dysfunction, and Alzheimer’s Disease. J. Alzheimer’S. Dis. (2017) 57, 1105. https://doi.org/10.3233/JAD-161088. DOI: https://doi.org/10.3233/JAD-161088

Ahmad MA et al, Neuro-inflammation: a potential risk for dementia. Int. J. Mol. Sci. (2022) 23. https://doi.org/10.3390/IJMS23020616. DOI: https://doi.org/10.3390/ijms23020616

Ransohoff, RM et al. Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics (2015) 12, 896. https://doi.org/10.1007/S13311-015-0385-3. DOI: https://doi.org/10.1007/s13311-015-0385-3

Goldmann T et al, A new type of microglia gene targeting shows TAK1 to be pivotal in CNS autoimmune inflammation, 2013 1611 Nat. Neurosci. 16, 1618–1626. https://doi.org/10.1038/nn.3531. DOI: https://doi.org/10.1038/nn.3531

Triantafyllakou, I., Clemente, N., Khetavat, R.K., Dianzani, U., Tselios, T., Development of PLGA Nanoparticles with a Glycosylated Myelin Oligodendrocyte Glycoprotein Epitope (MOG35-55) against Experimental Autoimmune Encephalomyelitis (EAE). Mol. Pharm. (2022) 19, 3795–3805. https://doi.org/10.1021/ACS.MOLPHARMACEUT.2C00277. DOI: https://doi.org/10.1021/acs.molpharmaceut.2c00277

Erdo F et al, Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull. (2018) 143, 155–170. https://doi.org/10.1016/J.BRAINRESBULL.2018.10.009. DOI: https://doi.org/10.1016/j.brainresbull.2018.10.009

Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B., Singh, J., A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. Int. J. Mol. Sci. 2022b. 23 https://doi.org/10.3390/IJMS23031851. DOI: https://doi.org/10.3390/ijms23031851

Ow, S.Y., Dunstan, D.E., A brief overview of amyloids and Alzheimer’s disease. Protein Sci. 2014. 23, 1315–1331. https://doi.org/10.1002/PRO.2524. DOI: https://doi.org/10.1002/pro.2524

Breijyeh, Z., Karaman, R., Comprehensive review on Alzheimer’s disease: causes and treatment. Molecules 2020. 25. https://doi.org/10.3390/MOLECULES25245789. DOI: https://doi.org/10.3390/molecules25245789

Hogan, DB et al., Diagnosis and treatment of dementia: 5. Nonpharmacologic and pharmacologic therapy for mild to moderate dementia. CMAJ 2008. 179, 1019–1026. https://doi.org/10.1503/CMAJ.081103. DOI: https://doi.org/10.1503/cmaj.081103

Gepshtein, S., Li, X., Snider, J., Plank, M., Lee, D., Poizner, H., Dopamine function and the efficiency of human movement. J. Cogn. Neurosci. 2014. 26, 645–657. https://doi.org/10.1162/JOCN_A_00503. DOI: https://doi.org/10.1162/jocn_a_00503

Khatri, D.K., Choudhary, M., Sood, A., Singh, S.B., Anxiety: An ignored aspect of Parkinson’s disease lacking attention. Biomed. Pharmacother. 2020. 131, 110776 https://doi.org/10.1016/J.BIOPHA.2020.110776. DOI: https://doi.org/10.1016/j.biopha.2020.110776

JC, G., RA, B., The Differential Diagnosis of Parkinson’s Disease. Neurology 2018. 43, S1–S11. https://doi.org/10.15586/CODONPUBLICATIONS. PARKINSONS DISEASE. 2018. CH6.

Kulisevsky, J., Pharmacological management of Parkinson’s disease motor symptoms: update and recommendations from an expert. S1–S10 Rev. Neurol. 2022. 75. https://doi.org/10.33588/RN.75S04.2022217. DOI: https://doi.org/10.33588/rn.75S04.2022217

Mack, J., Marsh, L., Parkinson’s Disease: Cognitive Impairment. Focus (Am. Psychiatr. Publ. ). 2017. 15, 42–54. https://doi.org/10.1176/APPI.FOCUS.20160043. DOI: https://doi.org/10.1176/appi.focus.20160043

Jankovic, J., Aguilar, L.G., Current approaches to the treatment of Parkinson’s disease. Neuropsychiatr. Dis. Treat. 2008. 4, 743–757. https://doi.org/10.2147/NDT.S2006. DOI: https://doi.org/10.2147/NDT.S2006

Coles, A., Newer therapies for multiple sclerosis. Ann. Indian Acad. Neurol. 2015. 18, S30–S34. https://doi.org/10.4103/0972-2327.164824. DOI: https://doi.org/10.4103/0972-2327.164824

Klineova, S., Lublin, F.D., Clinical Course of Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2018. 8 https://doi.org/10.1101/CSHPERSPECT.A028928. DOI: https://doi.org/10.1101/cshperspect.a028928

Sugandhi, V.V et al., Pharmacokinetics of vitamin dosage forms: A complete overview. Food Sci. Nutr. 2024. 12, 48–83. https://doi.org/10.1002/FSN3.3787. DOI: https://doi.org/10.1002/fsn3.3787

Eva, L et al., A Comprehensive Review on Neuroimmunology: Insights from Multiple Sclerosis to Future Therapeutic Developments. Biomedicines 2023 11. https://doi.org/10.3390/BIOMEDICINES11092489. DOI: https://doi.org/10.3390/biomedicines11092489

Dargahi, N., Katsara, M., Tselios, T., Androutsou, M.E., De Courten, M., Matsoukas, J., Apostolopoulos, V., 2017. Multiple sclerosis: immunopathology and treatment update. Brain Sci. 7 https://doi.org/10.3390/BRAINSCI7070078. DOI: https://doi.org/10.3390/brainsci7070078

Roos, R.A.C., Huntington’s disease: A clinical review. Orphanet J. Rare Dis. 2010. 5, 1–8. https://doi.org/10.1186/1750-1172-5-40/TABLES/5. DOI: https://doi.org/10.1186/1750-1172-5-40

Schulte, J., Littleton, J.T., The biological function of the Huntingtin protein and its relevance to Huntington’s Disease pathology. Curr. Trends Neurol. 2011. 5, 65–78.

Saudou, F., Humbert, S., The Biology of Huntingtin. Neuron 2016. 89, 910–926. https://doi.org/10.1016/J.NEURON.2016.02.003. DOI: https://doi.org/10.1016/j.neuron.2016.02.003

Schneider, S.A., Bird, T., Huntington’s Disease, Huntington’s Disease Look-Alikes↱, and Benign Hereditary Chorea: What’s New? Mov. Disord. Clin. Pract. 2016. 3, 342–354. https://doi.org/10.1002/MDC3.12312. DOI: https://doi.org/10.1002/mdc3.12312

McGarry, A et al., Additional Safety and Exploratory Efficacy Data at 48 and 60 Months from Open-HART, an Open-Label Extension Study of Pridopidine in Huntington Disease. J. Huntingt. Dis. 2020. 9, 173–184. https://doi.org/10.3233/JHD-190393. DOI: https://doi.org/10.3233/JHD-190393

Zarei, S. et al., A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 2015. 6 https://doi.org/10.4103/2152-7806.169561. DOI: https://doi.org/10.4103/2152-7806.169561

Masrori, P., Damme, P.Van, Amyotrophic lateral sclerosis: a clinical review 2020. 1918–1929. https://doi.org/10.1111/ene.14393 DOI: https://doi.org/10.1111/ene.14393

Rg, M., Jd, M., Dh, M., Rg, M., Jd, M., Dh, M., Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND) 2012. DOI: https://doi.org/10.1002/14651858.CD001447.pub3

Neupane, P. et al, Investigating Edaravone Use for Management of Amyotrophic Lateral Sclerosis (ALS): A Narrative Review. Cureus 15. 2023. https://doi.org/10.7759/CUREUS.33746. DOI: https://doi.org/10.7759/cureus.33746

Hogden, A., Foley, G., Henderson, R.D., James, N., Aoun, S.M., Amyotrophic lateral sclerosis: improving care with a multidisciplinary approach. J. Multidiscip. Healthc. 2017. 10, 205–215. https://doi.org/10.2147/JMDH.S134992. DOI: https://doi.org/10.2147/JMDH.S134992

Thursby, E.; Juge, N. Introduction to the Human Gut Microbiota. Biochem. J, 2017., 474, 1823–1836. DOI: https://doi.org/10.1042/BCJ20160510

Cho, I.; Blaser, M.J. The Human Microbiome: At the Interface of Health and Disease. Nat. Rev. Genet. 2012, 13, 260–270. DOI: https://doi.org/10.1038/nrg3182

Yatsunenko, T. et al., Human Gut Microbiome Viewed across Age and Geography. Nature 2012, 486, 222–227. DOI: https://doi.org/10.1038/nature11053

Hills, R.D.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. DOI: https://doi.org/10.3390/nu11071613

Eckburg, P.B.; Bik, E.M.; Bernstein, C.N.; Purdom, E.; Dethlefsen, L.; Sargent, M.; Gill, S.R.; Nelson, K.E.; Relman, D.A. Diversityof the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. DOI: https://doi.org/10.1126/science.1110591

Suganya, K.; Koo, B.S. Gut-Brain Axis: Role of Gut Microbiota on Neurological Disorders and How Probiotics/Prebiotics Beneficially Modulate Microbial and Immune Pathways to Improve Brain Functions. Int. J. Mol. Sci. 2020, 21, 7551. DOI: https://doi.org/10.3390/ijms21207551

Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The Gut-Brain Axis: Interactions between Enteric Microbiota, Central and Enteric Nervous Systems. Ann. Gastroenterol. 2015, 28, 203–209.

Collins, S.M.; Surette, M.; Bercik, P. The Interplay between the Intestinal Microbiota and the Brain. Nat. Rev. Microbiol. 2012, 10, 735–742. DOI: https://doi.org/10.1038/nrmicro2876

Zhu, S.; Jiang, Y.; Xu, K.; Cui, M.; Ye,W.; Zhao, G.; Jin, L.; Chen, X. The Progress of Gut Microbiome Research Related to Brain Disorders. J. Neuroinflamm. 2020, 17, 25. DOI: https://doi.org/10.1186/s12974-020-1705-z

Ghaisas, S.; Maher, J.; Kanthasamy, A. Gut Microbiome in Health and Disease: Linking the Microbiome-Gut-Brain Axis and Environmental Factors in the Pathogenesis of Systemic and Neurodegenerative Diseases. Pharmacol. Ther. 2016, 158, 52–62. DOI: https://doi.org/10.1016/j.pharmthera.2015.11.012

Hoban, A.E.; Stilling, R.M.; Ryan, F.J.; Shanahan, F.; Dinan, T.G.; Claesson, M.J.; Clarke, G.; Cryan, J.F. Regulation of Prefrontal Cortex Myelination by the Microbiota. Transl. Psychiatry 2016, 6, e774. DOI: https://doi.org/10.1038/tp.2016.42

Tran, S.M.S.; Hasan Mohajeri, M. The Role of Gut Bacterial Metabolites in Brain Development, Aging and Disease. Nutrients 2021, 13, 732. DOI: https://doi.org/10.3390/nu13030732

Furness, J.B.; Callaghan, B.P.; Rivera, L.R.; Cho, H.J. The Enteric Nervous System and Gastrointestinal Innervation: Integrated Local and Central Control. Adv. Exp. Med. Biol. 2014, 817, 39–71. DOI: https://doi.org/10.1007/978-1-4939-0897-4_3

Nezami, B.G.; Srinivasan, S. Enteric Nervous System in the Small Intestine: Pathophysiology and Clinical Implications. Curr. Gastroenterol. Rep. 2010, 12, 358–365. DOI: https://doi.org/10.1007/s11894-010-0129-9

Fleming, M.A.; Ehsan, L.; Moore, S.R.; Levin, D.E. The Enteric Nervous System and Its Emerging Role as a Therapeutic Target. Gastroenterol. Res. Pract. 2020, 8024171. DOI: https://doi.org/10.20944/preprints202006.0135.v1

Ma, Q.; Xing, C.; Long,W.;Wang, H.Y.; Liu, Q.;Wang, R.F. Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut-Brain Axis. J. Neuroinflamm. 2019, 16, 53. DOI: https://doi.org/10.1186/s12974-019-1434-3

Tang, H.; Chen, X.; Huang, S.; Yin, G.;Wang, X.; Shen, G. Targeting the Gut–Microbiota–Brain Axis in Irritable Bowel Disease to Improve Cognitive Function—Recent Knowledge and Emerging Therapeutic Opportunities. Rev. Neurosci. 2023. DOI: https://doi.org/10.1515/revneuro-2022-0155

Jain, T.; Li, Y.-M. Gut Microbes Modulate Neurodegeneration. Science (1979) 2023, 379, 142–143. DOI: https://doi.org/10.1126/science.adf9548

Gulliver, E.L.; Young, R.B.; Chonwerawong, M.; D’Adamo, G.L.; Thomason, T.; Widdop, J.T.; Rutten, E.L.; Rossetto Marcelino, V.; Bryant, R.V.; Costello, S.P.; et al. Review Article: The Future of Microbiome-Based Therapeutics. Aliment. Pharmacol. Ther. 2022, 56, 192–208. DOI: https://doi.org/10.1111/apt.17049

Misra, S.; Mohanty, D. Psychobiotics: A New Approach for Treating Mental Illness? Crit. Rev. Food Sci. Nutr. 2019, 59, 1230–1236. DOI: https://doi.org/10.1080/10408398.2017.1399860

Saulnier, D.M.; Ringel, Y.; Heyman, M.B.; Foster, J.A.; Bercik, P.; Shulman, R.J.; Versalovic, J.; Verdu, E.; Dinan, T.G.; Hecht, G.; et al. The Intestinal Microbiome, Probiotics and Prebiotics in Neuro-gastroenterology. Gut Microbes 2013, 4, 17–27. DOI: https://doi.org/10.4161/gmic.22973

Gowing, G., Svendsen, S., Svendsen, C.N., 2017. Ex vivo gene therapy for the treatment of neurological disorders. Prog. Brain Res. 230, 99–132. https://doi.org/10.1016/BS.PBR.2016.11.003. DOI: https://doi.org/10.1016/bs.pbr.2016.11.003

Savi´c, N., Schwank, G., 2016. Advances in therapeutic CRISPR/Cas9 genome editing. Transl. Res. 168, 15–21. https://doi.org/10.1016/J.TRSL.2015.09.008. DOI: https://doi.org/10.1016/j.trsl.2015.09.008

Ling, Q., Herstine, J.A., Bradbury, A., Gray, S.J., 2023. AAV-based in vivo gene therapy for neurological disorders. Nat. Rev. Drug Discov. 22, 789–806. https://doi.org/10.1038/S41573-023-00766-7. DOI: https://doi.org/10.1038/s41573-023-00766-7

Mortada, I., Farah, R., Nabha, S., Ojcius, D.M., Fares, Y., Almawi, W.Y., Sadier, N.S., 2021. Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 12, 654739 https://doi.org/10.3389/FNEUR.2021.654739/BIBTEX.

Shin, J., Kim, H.J., Jeon, B., Immunotherapy Targeting Neurodegenerative Proteinopathies: α-Synucleinopathies and Tauopathies. J. Mov. Disord. 2020. 13, 11. https://doi.org/10.14802/JMD.19057. DOI: https://doi.org/10.14802/jmd.19057

Valera, E., Masliah, E., Immunotherapy for neurodegenerative diseases: focus on α synucleino-pathies. Pharmacol. Ther. 2013. 138, 311–322. https://doi.org/10.1016/J.PHARMTHERA.2013.01.013. DOI: https://doi.org/10.1016/j.pharmthera.2013.01.013

Hoque, M., Samanta, A., Alam, S.S.M., Zughaibi, T.A., Kamal, M.A., Tabrez, S., Nanomedicine-based immunotherapy for Alzheimer’s disease. Neurosci. Biobehav. Rev. 2023. 144 https://doi.org/10.1016/J.NEUBIOREV.2022.104973. DOI: https://doi.org/10.1016/j.neubiorev.2022.104973

Mortada, I., Farah, R., Nabha, S., Ojcius, D.M., Fares, Y., Almawi, W.Y., Sadier, N.S., Immunotherapies for Neurodegenerative Diseases. Front. Neurol. 2021. 12, 654739 https://doi.org/10.3389/FNEUR.2021.654739/BIBTEX. DOI: https://doi.org/10.3389/fneur.2021.654739

Weihofen, A. et al., Development of an aggregate-selective, human-derived α-synuclein antibody BIIB054 that ameliorates disease phenotypes in Parkinson’s disease models. Neurobiol. Dis. 2019. 124, 276–288. https://doi.org/10.1016/J.NBD.2018.10.016. DOI: https://doi.org/10.1016/j.nbd.2018.10.016

Imran, M et al., Exploring the Remarkable Chemotherapeutic Potential of Polyphenolic Antioxidants in Battling Various Forms of Cancer, 28, 3475 Mol 2023 Vol. 28, 3475. https://doi.org/10.3390/MOLECULES28083475. DOI: https://doi.org/10.3390/molecules28083475

Stratakis, E., Novel Biomaterials for Tissue Engineering 2018, 2018, Vol. 19, 3960 19 Int. J. Mol. Sci. 3960. https://doi.org/10.3390/IJMS19123960. DOI: https://doi.org/10.3390/ijms19123960

Bordoni, M., Scarian, E., Rey, F., Gagliardi, S., Carelli, S., Pansarasa, O., Cereda, C., Biomaterials in neurodegenerative disorders: a promising therapeutic approach. Int. J. Mol. Sci. 2020b 21 https://doi.org/10.3390/IJMS21093243. DOI: https://doi.org/10.3390/ijms21093243

Eleftheriadou, D., Kesidou, D., Moura, F., Felli, E., Song, W., 2020. Redox-responsive nanobiomaterials-based therapeutics for neurodegenerative diseases. Small 16. https://doi.org/10.1002/SMLL.201907308. DOI: https://doi.org/10.1002/smll.201907308

Shabani, L., Abbasi, M., Azarnew, Z., Amani, A.M., Vaez, A., Neuronanotechnology: diagnostic and therapeutic nano-based strategies in applied neuroscience, 2023 221 22, 1–41 Biomed. Eng. OnLine. https://doi.org/10.1186/S12938-022-01062-Y. DOI: https://doi.org/10.1186/s12938-022-01062-y

Schliebs,R. and Arendt T. Thecholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2020b 221,555–563.doi:10.1016/j.bbr.2010.11.058 DOI: https://doi.org/10.1016/j.bbr.2010.11.058

Posadas,I.,López-Hernández,B.,andCeña,V. Nicotinicreceptors in neurodegeneration. Curr. Neuro-pharmacol (2013) 11, 298–314. doi: 10.2174/1570159X11311030005 DOI: https://doi.org/10.2174/1570159X11311030005

PuzzoD. and Arancio O Amyloid-β peptide: J. Alzheimers Dis. (2013). 33 (Suppl.1), S111–S120. doi:10.3233/JAD-2012-129033 DOI: https://doi.org/10.3233/JAD-2012-129033

Wang,H.Y. et al., Beta-Amyloid (1-42) binds to alpha 7 nicotinic acetylcholine receptor with high affinity Implications for Alzheimer’s disease pathology. J. Biol. Chem. (2000) 275, 5626–5632.doi:10.1074/jbc.275.8.5626 DOI: https://doi.org/10.1074/jbc.275.8.5626

Ranilla, L.G.; Kwon, Y.-I.; Apostolidis, E.; Shetty, K. Phenolic Compounds, Antioxidant Activity and in Vitro Inhibitory Potential against Key Enzymes Relevant for Hyperglycemia and Hypertension of Commonly Used Medicinal Plants, Herbs and Spices in Latin America. Bioresour. Technol. 2010, 101, 4676–4689. DOI: https://doi.org/10.1016/j.biortech.2010.01.093

Lopes, G.; Gomes, E.; Barbosa, M.; Bernardo, J.; Valentão, P. Camel Grass Phenolic Compounds: Targeting Inflammation and Neurologically Related Conditions. Molecules 2022, 27, 7707. DOI: https://doi.org/10.3390/molecules27227707

Lee, B.K.; Hyun, S.-W.; Jung, Y.-S. Yuzu Hesperidin Ameliorate Blood-Brain Barrier Disruption during Hypoxia via Antioxidant Activity. Antioxidants 2020, 9, 843. DOI: https://doi.org/10.3390/antiox9090843

Fox, J.H.; Connor, T.; Stiles, M.; Kama, J.; Lu, Z.; Dorsey, K.; Lieberman, G.; Sapp, E.; Cherny, R.A.; Banks, M.; et al. Cysteine Oxidation within N-Terminal Mutant Huntingtin Promotes Oligomerization and Delays Clearance of Soluble Protein. J. Biol. Chem. 2011, 286, 18320–18330. DOI: https://doi.org/10.1074/jbc.M110.199448

Bartzokis, G.; Lu, P.H.; Tishler, T.A.; Fong, S.M.; Oluwadara, B.; Finn, J.P.; Huang, D.; Bordelon, Y.; Mintz, J.; Perlman, S. Myelin Breakdown and Iron Changes in Huntington’s Disease: Pathogenesis and Treatment Implications. Neurochem. Res. 2007, 32, 1655–1664. DOI: https://doi.org/10.1007/s11064-007-9352-7

Zeb, A. Concept, Mechanism, and Applications of Phenolic Antioxidants in Foods. J. Food Biochem. 2020, 44, e13394. DOI: https://doi.org/10.1111/jfbc.13394

Zamora, R.; Hidalgo, F.J. The Triple Defensive Barrier of Phenolic Compounds against the Lipid Oxidation-Induced Damage in Food Products. Trends Food Sci. Technol. 2016, 54, 165–174. DOI: https://doi.org/10.1016/j.tifs.2016.06.006

Li, Y.; Jongberg, S.; Andersen, M.L.; Davies, M.J.; Lund, M.N. Quinone-Induced Protein Modifications: Kinetic Preference for Reaction of 1,2-Benzoquinones with Thiol Groups in Proteins. Free Radic. Biol. Med. 2016, 97, 148–157. DOI: https://doi.org/10.1016/j.freeradbiomed.2016.05.019

Downloads

Published

06-01-2026

Issue

Section

Research Articles

How to Cite

[1]
Tejas Ganatra and Pravin Tirgar, Trans., “A Panoramic View on Neurodegeneration, Its Connection with Microbiota and Its Therapeutics”, Int J Sci Res Sci & Technol, vol. 13, no. 1, pp. 01–18, Jan. 2026, doi: 10.32628/IJSRST25126403.