Ultrasonic and Acoustic Investigation of Binary Mixtures of Ethyl Benzoate and 2 Methyl 1 Propanol at Different Temperatures
DOI:
https://doi.org/10.32628/IJSRST26133Keywords:
Ultrasonic velocity, Ethyl benzoate, 2 methyl 1 propanol, Acoustic parameters, Molecular interactionsAbstract
Ultrasonic velocity (U), density (ρ) and viscosity (η) of the binary liquid mixture consisting of ethyl benzoate (X₁) and 2 methyl 1 propanol (X₂) were measured over the entire mole fraction range at temperatures 303.15, 308.15, 313.15 and 318.15 K. From the experimental data, several acoustical and thermodynamic parameters such as molar volume (V), adiabatic compressibility (β_ad), intermolecular free length (L_f), internal pressure (π), acoustic impedance (Z) and enthalpy (H) were evaluated. The variation of these parameters with composition and temperature has been used to understand the nature and strength of molecular interactions in the mixture. The results indicate the presence of specific interactions, mainly hydrogen bonding and dipole–dipole interactions, between unlike molecules.
Downloads
References
Jacobson, B., Acta Chem. Scand., 6, 1485–1498 (1952). DOI: https://doi.org/10.3891/acta.chem.scand.06-1485
Kinsler, L. E., Frey, A. R., Coppens, A. B., Sanders, J. V., Fundamentals of Acoustics, Wiley, New York (2000).
Ali, A., Nain, A. K., J. Chem. Thermodyn., 34, 537–548 (2002). DOI: https://doi.org/10.1016/S0378-7788(02)00004-X
Praharaj, M. K., Satapathy, D. K., Indian J. Pure Appl. Phys., 45, 148–154 (2007).
Fort, R. J., Moore, W. R., Trans. Faraday Soc., 61, 2102–2111 (1965). DOI: https://doi.org/10.1039/tf9656102102
Benson, G. C., Kiyohara, O., J. Chem. Thermodyn., 11, 1061–1074 (1979). DOI: https://doi.org/10.1016/0021-9614(79)90136-8
Riddick, J. A., Bunger, W. B., Sakano, T. K., Organic Solvents, Wiley-Interscience, New York (1986).
Palani, R., Geetha, A., Indian J. Pure Appl. Phys., 46, 852–857 (2008).
Kannappan, V., Rajendran, V., Indian J. Phys., 76B, 61–69 (2002).
Reed, T. M., Gubbins, K. E., Applied Statistical Mechanics, McGraw-Hill, New York (1973).
Nithiyanantham, S., Palaniappan, L., J. Mol. Liq., 153, 15–20 (2010).
Arul, G., Palaniappan, L., J. Chem. Eng. Data, 50, 152–157 (2005).
Thirumaran, S., Indian J. Pure Appl. Phys., 45, 852–856 (2007).
Eyring, H., Kincaid, J. F., J. Chem. Phys., 6, 620–629 (1938). DOI: https://doi.org/10.1063/1.1750134
Glinski, J., J. Chem. Phys., 118, 2301–2307 (2003). DOI: https://doi.org/10.1063/1.1534579
Rao, M. R., J. Chem. Phys., 9, 682–688 (1941). DOI: https://doi.org/10.1063/1.1750976
Almasi, M., Amani, M., Phys. Chem. Liq., 54, 1–15 (2016).
Nain, A. K., Ultrasonics, 48, 241–246 (2008).
Kumar, R., Mahajan, S., J. Mol. Liq., 198, 112–118 (2014).
Ali, A., Hyder, S., Nain, A. K., Indian J. Phys., 74B, 63–70 (2000).
Downloads
Published
Issue
Section
License
Copyright (c) 2026 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0