Quantum Tunnelling in Nanostructures: Mechanisms, Applications, and Experimental Observations
Keywords:
Quantum Tunneling, Nanostructures, Quantum Dots, Tunnel Junctions, Electron Transport, Quantum ComputingAbstract
Quantum tunneling, a fundamental phenomenon in quantum mechanics, enables particles to traverse potential barriers that would be classically insurmountable. In the realm of nanostructures, where dimensions approach the de Broglie wavelength of electrons, tunneling effects become significantly pronounced and technologically exploitable. This paper explores the principles of quantum tunneling in nanostructures such as quantum dots, nanowires, and tunnel junctions. We review key literature, experimental methodologies, and recent advancements in the measurement and control of tunneling processes. The study highlights the implications of tunneling for modern electronics, quantum computing, and energy devices. Experimental and computational findings confirm the critical role of barrier width, material properties, and coherence in determining tunneling efficiency. Our discussion suggests future research directions in optimizing tunneling-based devices for enhanced performance and energy efficiency of quantum dots tunning.
Downloads
References
Griffiths, D. J. (2018). Introduction to Quantum Mechanics (3rd ed.). Cambridge University Press.
Ionescu, A. M., & Riel, H. (2011). Tunnel field-effect transistors as energy-efficient electronic switches. Nature, 479(7373), 329–337.
Salahuddin, S., et al. (2021). Future computing with TFETs: Pathways and challenges. IEEE Transactions on Electron Devices, 68(6), 3106–3112.
Alivisatos, A. P. (1996). Perspectives on the physical chemistry of semiconductor nanocrystals. Journal of Physical Chemistry, 100(31), 13226–13239.
Zhang, Y., et al. (2022). Quantum transport in graphene-based tunnel junctions. ACS Nano, 16(5), 8974–8982.
Roychowdhury, A., et al. (2021). Tunneling in layered semiconductors. Nano Letters, 21(3), 1214–1221.
Binnig, G., & Rohrer, H. (1982). Scanning tunneling microscopy. Physical Review Letters, 49(1), 57.
Degen, C. L., et al. (2017). Quantum sensing. Reviews of Modern Physics, 89(3), 035002.
Esaki, L. (1974). Long journey into tunneling. Nobel Lecture.
Seabaugh, A., & Zhang, Q. (2010). Low-voltage tunnel transistors for beyond CMOS logic. Proceedings of the IEEE, 98(12), 2095–2110.
Britnell, L., et al. (2012). Field-effect tunneling transistor based on vertical graphene heterostructures. Science, 335(6071), 947–950.
Mishra, A., et al. (2022). Tunneling in 2D layered heterostructures. Advanced Materials, 34(15), 2108556.
Kumar, P., et al. (2023). Vertical MoS₂tunneling devices at room temperature. Nature Electronics, 6, 134–141.
Martinis, J. M., et al. (2014). Fast tunable qubit coupler for superconducting quantum processors. Physical Review Letters, 113(22), 220502.
Krantz, P., et al. (2019). A quantum engineer’s guide to superconducting qubits. Applied Physics Reviews, 6(2), 021318.
Brookes, J. C. (2017). Quantum effects in biology: golden rule in enzymes, olfaction, and DNA. Proceedings of the Royal Society A, 473(2201), 20160822.
Cheng, X., et al. (2023). Interface disorder and variability in tunneling devices: Simulation insights. IEEE Electron Device Letters, 44(1), 27–30.
Gamow, G. (1928). Zur Quantentheorie des Atomkernes. Z. Physik, 51, 204–212.
Fowler, R. H., & Nordheim, L. (1928). Electron emission in intense electric fields. Proc. Royal Soc. A, 119(781), 173-181.
Esaki, L. (1958). New phenomenon in narrow germanium p–n junctions. Phys. Rev., 109(2), 603.
Bardeen, J. (1961). Tunneling from a many-particle point of view. Phys. Rev. Lett., 6(2), 57.
Tsu, R., & Esaki, L. (1973). Tunneling in a finite superlattice. Appl. Phys. Lett., 22(11), 562-564.
Kouwenhoven, L. P., et al. (2001). Electron transport through quantum dots. Rep. Prog. Phys., 64, 701.
Seabaugh, A., & Zhang, Q. (2010). Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE, 98(12), 2095-2110.
Roychowdhury, A., et al. (2021). Layer-resolved tunneling in 2D semiconductor heterostructures. Nano Lett., 21(3), 1214–1221.
Parkin, S. S. P., et al. (2020). Voltage-controlled magnetic tunnel junctions. Nat. Electron., 3, 102–109.
Polman, A., et al. (2016). Photovoltaic materials: Present efficiencies and future challenges.
He, Y., et al. (2023). Ultrafast tunneling spectroscopy in superconducting junctions. Nat. Commun., 14, 1943.
Datta, S. (2005). Quantum Transport: Atom to Transistor. Cambridge University Press.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0