Machine Learning Review for Early Plant Leaf Disease Detection
Keywords:
Plant leaf disease detection, early diagnosis, image processing, machine learning, deep learning, CNN, MobileNet, Vision Transformer, transfer learning, precision agricultureAbstract
Early detection of plant leaf diseases is crucial for ensuring crop health and yield in precision agriculture. Machine learning techniques, particularly convolutional neural networks (CNNs) and transfer learning, have significantly outperformed traditional feature-based methods in accuracy and robustness. Public datasets such as Plant Village, coupled with preprocessing techniques like augmentation, have enabled the development of scalable detection frameworks. Recent studies highlight the effectiveness of lightweight architectures (e.g., MobileNet, FourCropNet) and IncMB-enhanced Inception models, achieving classification accuracies above 99% on benchmark datasets. Furthermore, hybrid models that combine CNNs with classical classifiers such as SVM, along with Vision Transformer (ViT)-based approaches, have improved early symptom recognition under diverse field conditions. Real-time implementations using YOLO variants and attention-augmented MobileNet backbones demonstrate the feasibility of deploying disease detection models on mobile and edge devices. Despite these advances, challenges persist, including dataset imbalance, environmental variability, and limited generalization across crop species. Future directions include model compression, multimodal integration (hyperspectral, thermal imaging), and federated learning to enhance adaptability and large-scale deployment. Overall, machine-learning-driven image analysis represents a promising pathway for early disease detection, supporting sustainable agriculture and global food security.
Downloads
References
Aboelenin, S., Elbasheer, F. A., Eltoukhy, M. M., Elhady, W. M., & Hosny, K. M. (2025). A hybrid Framework for plant leaf disease detection and classification using convolutional neural networks and vision transformer. Complex & Intelligent Systems, 11(2). https://doi.org/10.1007/s40747-024-01764-x
Akhtar, M., Eksheir, I., & Shanableh, T. (2025). Edge-Optimized Deep Learning Architectures for Classification of Agricultural Insects with Mobile Deployment. Information, 16(5), 348. https://doi.org/10.3390/info16050348
Batool, A., Gil, J., & Byun, Y.-C. (2024). A Compact Deep Learning Approach Integrating Depthwise Convolutions and Spatial Attention for Plant Disease Classification. Research Square (Research Square). https://doi.org/10.21203/rs.3.rs-5392998/v1
Borhani, Y., Khoramdel, J., & Najafi, E. (2022). A deep learning based approach for automated plant disease classification using vision transformer. Scientific Reports, 12(1). https://doi.org/10.1038/s41598-022-15163-0
Fuentes, A., Asgher, S. A., Dong, J., Jeong, Y., Lee, M. H., Kim, T.-H., Yoon, S., & Park, D. S. (2025). Comprehensive plant health monitoring: expert-level assessment with spatio-temporal image data. Frontiers in Plant Science, 16. https://doi.org/10.3389/fpls.2025.1511651
Ghosh, H., Rahat, I. S., Emon, M. Y., Mashrafi, Md. J., Tanzin, M., Mohanty, S. N., & Kant, S. (2025). Advanced neural network architectures for tomato leaf disease diagnosis in precision agriculture. Discover Sustainability, 6(1). https://doi.org/10.1007/s43621-025-01149-1
Hasan, R. I., Yusuf, S. M., & Alzubaidi, L. (2020). Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion [Review of Review of the State of the Art of Deep Learning for Plant Diseases: A Broad Analysis and Discussion]. Plants, 9(10), 1302. Multidisciplinary Digital Publishing Institute. https://doi.org/10.3390/plants9101302
Herrera-Poyato, D., Domínguez-Rull, J., Montes, R., Hernánde, I., Barrio, I., Poblete-Echeverría, C., Tardáguila, J., Herrera, F., & Herrera-Poyatos, A. (2024). Small data deep learning methodology for in-field disease detection. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2409.17119
Hossain, S., Reza, M. T., Chakrabarty, A., & Jung, Y. J. (2023). Aggregating Different Scales of Attention on Feature Variants for Tomato Leaf Disease Diagnosis from Image Data: A Transformer Driven Study. Sensors, 23(7), 3751. https://doi.org/10.3390/s23073751
Jiang, Y., & Tong, W. (2022). Improved lightweight identification of agricultural diseases based on MobileNetV3. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2207.11238
Joshi, H. (2024). Edge-AI for Agriculture: Lightweight Vision Models for Disease Detection in Resource-Limited Settings. https://doi.org/10.48550/ARXIV.2412.18635
Khandagale, H. P. (2025). Design and Implementation of FourCropNet: A CNN-Based System for Efficient Multi-Crop Disease Detection and Management. Journal of Information Systems Engineering & Management, 10, 461. https://doi.org/10.52783/jisem.v10i7s.877
Kumar, A., Monga, H. P., Brahma, T., Kalra, S., & Sherif, N. (2025). Mobile-Friendly Deep Learning for Plant Disease Detection: A Lightweight CNN Benchmark Across 101 Classes of 33 Crops. https://doi.org/10.48550/ARXIV.2508.10817
Kumar, R., Chug, A., Singh, A. P., & Singh, D. (2022). A Systematic Analysis of Machine Learning and Deep Learning Based Approaches for Plant Leaf Disease Classification: A Review [Review of A Systematic Analysis of Machine Learning and Deep Learning Based Approaches for Plant Leaf Disease Classification: A Review]. Journal of Sensors, 2022, 1. Hindawi Publishing Corporation. https://doi.org/10.1155/2022/3287561
Li, G., Wang, Y., Zhao, Q., Yuan, P., & Chang, B. (2023). PMVT: a lightweight vision transformer for plant disease identification on mobile devices. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1256773
Mallick, M. T., Banerjee, S., Takur, N. T., Saha, H. N., & Chakrabarti, A. (2025). Evaluation of State-of-the-Art Deep Learning Techniques for Plant Disease and Pest Detection. Computers, Materials & Continua/Computers, Materials & Continua (Print), 1. https://doi.org/10.32604/cmc.2025.065250
Mehdipour, S., Mirroshandel, S. A., & Tabatabaei, S. A. (2025). Vision Transformers in Precision Agriculture: A Comprehensive Survey. https://doi.org/10.48550/ARXIV.2504.21706
Mugisha, S., Kisitu, R., & Tushabe, F. (2025). Hybrid Knowledge Transfer through Attention and Logit Distillation for On-Device Vision Systems in Agricultural IoT. https://doi.org/10.48550/ARXIV.2504.16128
Ngugi, H. N., Ezugwu, A. E., Akinyelu, A. A., & Abualigah, L. (2024). Revolutionizing crop disease detection with computational deep learning: a comprehensive review [Review of Revolutionizing crop disease detection with computational deep learning: a comprehensive review]. Environmental Monitoring and Assessment, 196(3). Springer Science+Business Media. https://doi.org/10.1007/s10661-024-12454-z
Nigam, S., & Jain, R. (2020). Plant disease identification using Deep Learning: A review [Review of Plant disease identification using Deep Learning: A review]. The Indian Journal of Agricultural Sciences, 90(2), 249. Indian Council of Agricultural Research. https://doi.org/10.56093/ijas.v90i2.98996
Pal, R., Bhaumik, A., Murmu, A., Hossain, S., Maity, B., & Sen, S. (2024). A Novel Feature Extraction Model for the Detection of Plant Disease from Leaf Images in Low Computational Devices (p. 393). https://doi.org/10.1007/978-981-97-5157-0_32
Parez, S., Dilshad, N., Alghamdi, N. S., Alanazi, T. M., & Lee, J. W. (2023). Visual Intelligence in Precision Agriculture: Exploring Plant Disease Detection via Efficient Vision Transformers. Sensors, 23(15), 6949. https://doi.org/10.3390/s23156949
Patra, A. K., & Gajurel, T. (2024). Improved Cotton Leaf Disease Classification Using Parameter-Efficient Deep Learning Framework. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2412.17587
Pham, T.-C., Nguyen, T.-N., & Nguyen, D. V. (2025). Ambiguity-aware semi-supervised learning for leaf disease classification. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-95849-3
Prama, T. T., & Oni, M. K. (2025). Optimized Custom CNN for Real-Time Tomato Leaf Disease Detection. In Lecture notes in computer science (p. 81). Springer Science+Business Media. https://doi.org/10.1007/978-3-031-97564-6_6
Radočaj, P., Radočaj, D., & Martinović, G. (2024). Image-Based Leaf Disease Recognition Using Transfer Deep Learning with a Novel Versatile Optimization Module. Big Data and Cognitive Computing, 8(6), 52. https://doi.org/10.3390/bdcc8060052
Ramos, L., & Sappa, Á. D. (2025). A comprehensive analysis of YOLO architectures for tomato leaf disease identification. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-025-11064-0
Sagar, S., Javed, M., & Doermann, D. (2023). Leaf-Based Plant Disease Detection and Explainable AI. arXiv (Cornell University). https://doi.org/10.48550/arXiv.2404.16833
Shoaib, M., Shah, B., El–Sappagh, S., Ali, A., Ullah, A., Alenezi, F., Gechev, T., Hussain, T., & Ali, F. (2023). An advanced deep learning models-based plant disease detection: A review of recent research [Review of An advanced deep learning models-based plant disease detection: A review of recent research]. Frontiers in Plant Science, 14. Frontiers Media. https://doi.org/10.3389/fpls.2023.1158933
Sujatha, R., Krishnan, S., Chatterjee, J. M., & Gandomi, A. H. (2025). Advancing plant leaf disease detection integrating machine learning and deep learning. Scientific Reports, 15(1). https://doi.org/10.1038/s41598-024-72197-2
Sun, H., Fu, R., Wang, X., Wu, Y., Al-Absi, M. A., Cheng, Z., Chen, Q., & Sun, Y. (2025). Efficient deep learning-based tomato leaf disease detection through global and local feature fusion. BMC Plant Biology, 25(1). https://doi.org/10.1186/s12870-025-06247-w
Teng, H., Wang, Y. H., Li, W., Chen, T., & Liu, Q. (2025). Advancing Rice Disease Detection in Farmland with an Enhanced YOLOv11 Algorithm. Sensors, 25(10), 3056. https://doi.org/10.3390/s25103056
Tonmoy, M. R., Hossain, Md. M., Dey, N., & Mridha, M. F. (2025). MobilePlantViT: A Mobile-friendly Hybrid ViT for Generalized Plant Disease Image Classification. https://doi.org/10.48550/ARXIV.2503.16628
Wang, B., Zhang, C., Li, Y., Cao, C., Huang, D., & Gong, Y. (2023). An ultra-lightweight efficient network for image-based plant disease and pest infection detection. Precision Agriculture, 24(5), 1836. https://doi.org/10.1007/s11119-023-10020-0
Xu, M., Kim, H., Yang, J., Fuentes, A., Meng, Y., Yoon, S., Kim, T.-H., & Park, D. S. (2023). Embrace Limited and Imperfect Training Datasets: Opportunities and Challenges in Plant Disease Recognition Using Deep Learning. arXiv (Cornell University). https://doi.org/10.48550/arxiv.2305.11533
Zhang, J., Zhou, H., Liu, K. J. R., & Xu, Y. (2025). ED-Swin Transformer: A Cassava Disease Classification Model Integrated with UAV Images. Sensors, 25(8), 2432. https://doi.org/10.3390/s25082432
Zhu, D., Tan, J., Wu, C., Yung, K. L., & Ip, W. H. (2023). Crop Disease Identification by Fusing Multiscale Convolution and Vision Transformer. Sensors, 23(13), 6015. https://doi.org/10.3390/s23136015
Downloads
Published
Issue
Section
License
Copyright (c) 2025 International Journal of Scientific Research in Science and Technology

This work is licensed under a Creative Commons Attribution 4.0 International License.
https://creativecommons.org/licenses/by/4.0